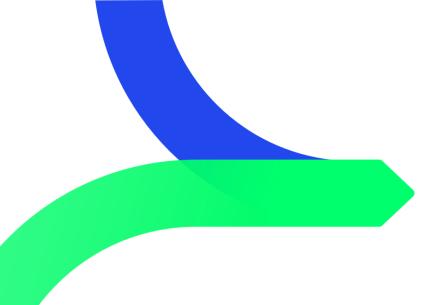


Prioritisation Framework

TECHNICAL APPENDIX 2


August 2023

PRIORITISATION FRAMEWORK

- 1. Introduction
- 2. Security scoring
- 3. Cost scoring
- 4. Environment scoring
- 5. Socioeconomic scoring
- 6. Conclusion and next steps

PRIORITISATION FRAMEWORK

Introduction

Introduction (1/2)

This Technical Appendix provides detailed guidance on each building block of the Prioritisation Framework in terms of the scoring criteria, choice of indicators, selection of proxy data and the scoring thresholds. Each section in this document focuses on one of the four dimensions of the Prioritisation Framework:

- Security
- Cost
- Environment
- Socioeconomic

It is followed by the breakdown of all regional-level factors, plant-level factors and plant-level indicators where relevant. Specifically, the breakdown of the components cover:

Scoring rationale

An overview of (1) how a regional-level or plant-level factor affects the way the selected plant-level indicator is scored, and (2) how the selected plant-level indicator is used as an independent metric. The section also clarifies whether the scoring rule applies to all plants, or only noncaptive or captive plants, and whether any proxy data is used.

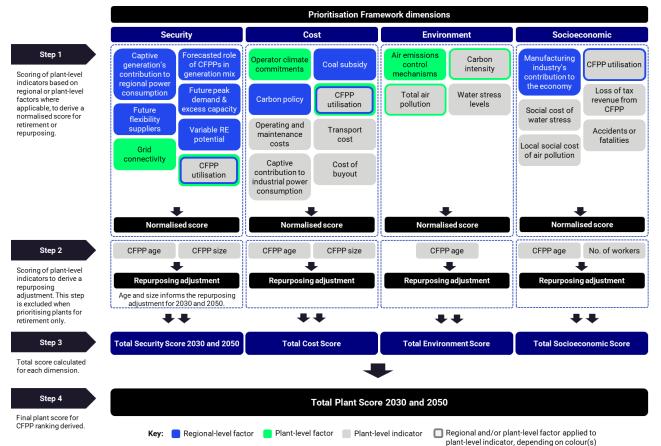
Scoring rules

The combination of normalised and repurposing adjustment scores that should be applied to the plant under different scenarios. It should be noted that the thresholds selected for different scenarios* reflect the context of the CFPP fleet in Odisha and their performance distribution against the selected metric. When replicating the Prioritisation Framework for other regions, these thresholds can be adjusted to reflect the nature of the CFPP fleet.

The choice of indicators for Odisha are informed by the level of data availability and can be adjusted for other regions accordingly.

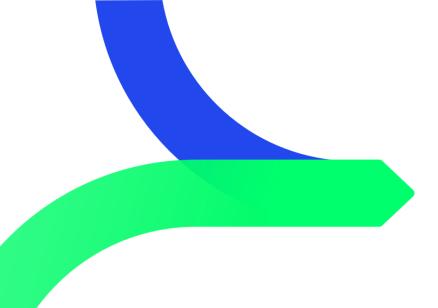
* E.g., Captive generation's contribution to regional power consumption is <30%; 30-60%; >60% or cost of buyout is <100 million; 100-200 million; >200 million etc.

Introduction (2/2)


Please note that the criteria under the four dimensions — security, cost, environment and socioeconomic — may at times score plant-level indicators such as utilisation in conflicting ways.

The intention of applying contradicting scoring rules and multiple criteria within the Prioritisation Framework is for the final rankings of plants to reflect the competing nature of different stakeholder perspectives. However, this may result in plants having average performance across the four dimensions when prioritising for retirement or repurposing. This may be controversial for certain stakeholder groups.

In these instances, appropriate weightings can be applied to develop different CFPP ranking lists to reflect the importance attached to each dimension by stakeholders.



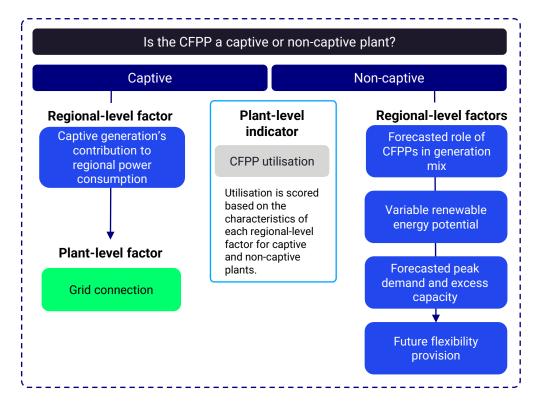
Prioritisation Framework overview

Scoring approach

- The indicators under each dimension are scored from 0-1.
- Scoring of indicators may be informed by regional or plantlevel factors, or repurposing assumptions.
- A total score is calculated for each dimension, and a final score derived for CFPP rankings.
- The higher the score, the more eligible the plant is for repurposing or retirement.
- Weightings of scoring dimensions and indicators can be adjusted to account for stakeholder preferences and priorities.

Security scoring

PRIORITISATION FRAMEWORK

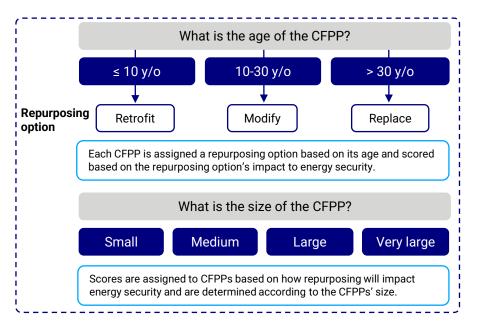

Security Score (1/2)

Under this score, CFPPs should be prioritised according to their role in supporting the security of supply, along with the impact that respective repurposing options will have on the energy system.

1 Normalised Security Score

Scoring is based on the CFPP's utilisation, and the factors listed below, depending on whether the plant is captive or non-captive. Under the security score, CFPPs should be prioritised according to their role in supporting the security of supply.

Security Score (2/2)


Repurposing adjustment

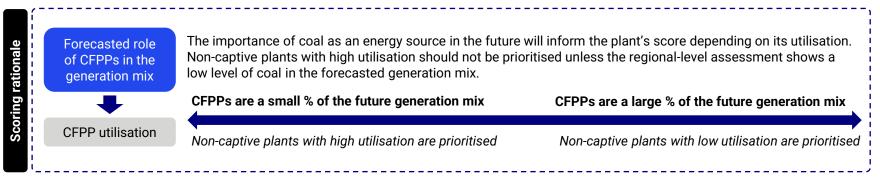
Repurposing options based on a CFPP's age are considered in order of least to most disruptive to security of supply in the short and long-term.

In terms of size, repurposing smaller plants will have the least impact on the security of the system. Therefore, smaller plants should be prioritised in the short-term, while medium to large sized plants should be prioritised in the long-term.

3 Total Security Score

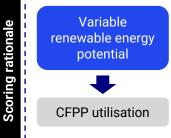
The Total Security Score takes into account the role of the CFPP in supporting the security of supply, along with the impact that respective repurposing options will have on the energy system.

Total Security Score = Average of [Normalised Security Score] and [Repurposing adjustment]



Regional-level factor: forecasted role of CFPPs in generation mix. Plant-level indicator: CFPP utilisation

Utilisation is selected as a plant-level indicator as it relates to how much of the plant's current capacity is being used to contribute to a region's energy security. If a CFPP is non-captive, then one of the regional-level factors applied to the utilisation plant-level indicator is the role of CFPPs in the region's generation mix.



				Forecasted role of CFPPs in generation mix			
rules	Plant-level indicator	Criteria	Value	Energy from CFPPs is ≥ 50%	Energy from CFPPs is > 10% but < 50%	Energy from CFPPs is ≤ 10%	
Scoring		Low	$0\% \le x \le 20\%$	1	0	0	
Sco	CFPP utilisation	Medium	20% < x ≤ 80%	0.5	1	0.5	
		High	80% < x ≤ 100%	0	0.5	1	

Regional-level factor: variable renewable energy potential. Plant-level indicator: CFPP utilisation

Utilisation is selected as a plant-level indicator as it relates to how much of the plant's current capacity is being used to contribute to a region's energy security. If a CFPP is non-captive, then one of the regional-level factors applied to the utilisation plant-level indicator is the level of variable renewable energy potential.

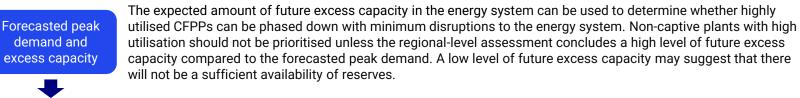
The expected contribution of variable renewable energy in the region's future generation mix can be used to determine whether highly utilised CFPPs can be phased down with minimum disruptions to the energy system. Non-captive plants with high utilisation should not be prioritised unless the regional-level assessment notes a high development of variable renewable energy. This suggests that there will be sufficient alternative capacity built in time to cope with the forecasted demand.

Variable RE is a small % of the future generation mix

Variable RE is a large % of the future generation mix

Non-captive plants with low utilisation are prioritised

Non-captive plants with high utilisation are prioritised


	Plant-level indicator	Criteria	Value	Variable renewable energy potential			
rules				Energy from solar and wind is ≥ 30%	Energy from solar and wind is > 10% but < 30%	Energy from solar and wind is ≤ 10%	
Scoring	CFPP utilisation	Low	0% ≤ x ≤ 20%	0	0	1	
202		Medium	20% < x ≤ 80%	0.5	1	0.5	
		High	80% < x ≤ 100%	1	0.5	0	

12

Regional-level factor: forecasted peak demand and excess capacity. Plant-level indicator: CFPP utilisation

Utilisation is selected as a plant-level indicator as it relates to how much of the plant's current capacity is being used to contribute to a region's energy security. If a CFPP is non-captive, then one of the regional-level factors applied to the utilisation plant-level indicator is the expected amount of peak demand and excess capacity in the system.

Low excess capacity

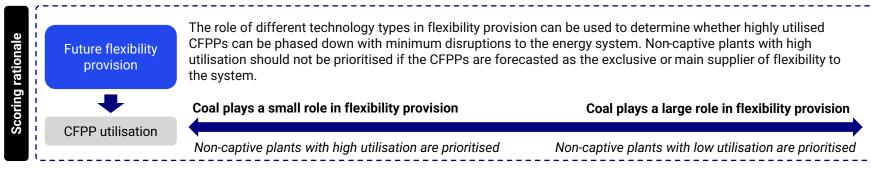
Scoring rationale

Scoring rule

CFPP utilisation

High excess capacity

Non-captive plants with low utilisation are prioritised


Non-captive plants with high utilisation are prioritised

				Forecasted peak demand and excess capacity			
	Plant-level indicator	Criteria	Value	Future excess capacity ≥ 50% of peak demand	Future excess capacity > 20% and < 50% of peak demand	Future excess capacity ≤ 20% of peak demand	
	CFPP utilisation	Low	0% ≤ x ≤ 20%	0	0.5	1	
		Medium	20% < x ≤ 80%	0.5	1	0.5	
		High	80% < x ≤ 100%	1	0	0	

Regional-level factor: future flexibility provision. Plant-level indicator: CFPP utilisation

Utilisation is selected as a plant-level indicator as it relates to how much of the plant's current capacity is being used to contribute to a region's energy security. If a CFPP is non-captive, then one of the regional-level factors applied to the utilisation plant-level indicator is the type of technologies used as flexibility suppliers in the energy system.

				Future flexibility provision			
Scoring rules	Plant-level indicator	Criteria	Value	Primarily CFPPs	A mix of CFPPs and other technologies	CFFPs are not suppliers or have a very low contribution	
scori		Low	$0\% \le x \le 20\%$	1	0	1	
0,	CFPP utilisation	Medium	20% < x ≤ 80%	0.5	1	1	
		High	80% < x ≤ 100%	0	0.5	1	13

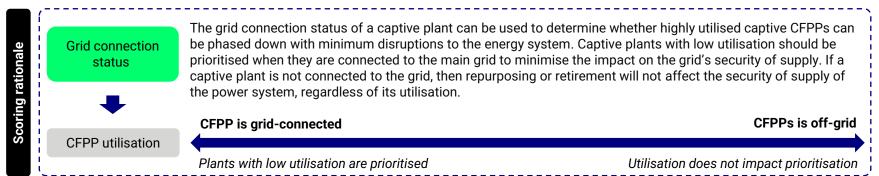
14

Regional-level factor: captive generation's contribution to regional power consumption. Plant-level indicator: CFPP utilisation

If a CFPP is captive, then one of the regional-level factors applied is captive power generation's contribution to regional power consumption. Utilisation is selected as a plant-level indicator as it relates to how much of the captive plant's current capacity is being used to contribute to regional power consumption.

	Captive generation's contribution to regional power consumption	prioritised as their removal will not have signific	neration has a low contribution to regional power consumption, then all captive plants should be their removal will not have significant impact on the security of supply. If captive generation has a tion to regional power consumption, then all captive plants should not be prioritised as they will be curity of supply.				
coring 	+	Captive generation makes a limited contribution to regional power consumption	Captive generation makes a significant contribution to regional power consumption				
	CFPP utilisation	All captive plants are prioritised	All captive plants are not prioritised				
		Car	ntive generation's contribution to regional power consumption				

ŝ
Ŭ.
<u> </u>
Ð
0
Ŭ
S


	Criteria	Value	Captive generation's contribution to regional power consumption			
Plant-level indicator			Contribution is ≤ 30%	Contribution is > 30% but < 60%	Contribution is ≥ 60%	
	Low	0% ≤ x ≤ 20%	1	1	0	
CFPP utilisation	Medium	20% < x ≤ 80%	1	0.5	0	
	High	80% < x ≤ 100%	1	0	0	

15

Plant-level factor: grid connection status. Plant-level indicator: CFPP utilisation

Utilisation is selected as a plant-level indicator as it relates to how much of the plant's current capacity is being used to contribute to a region's energy security. If a CFPP is captive, then one of the plant-level factors applied to the utilisation plant-level indicator is the grid connection status of the plant.

				Grid connection status		
Scoring rules	Plant-level indicator	Criteria	Value	CFPP connected to the main grid	Off-grid	
ring		Low	$0\% \le x \le 20\%$	1	1	
Sco	CFPP utilisation	Medium	20% < x ≤ 80%	0.5	1	
		High	80% < x ≤ 100%	0	1	

Repurposing adjustment security scoring example

Plant-level indicator: CFPP age

Scoring rationale

Two sets of scores are produced under the repurposing adjustment for the short-term (2030) and long-term (2050) to reflect the changing nature of the energy system and its ability to handle disruptions over time. The age of the CFPP is used to inform the repurposing option most suited for the plant.

In the short-term scenario (by 2030), the three repurposing options in the order of least to most disruptive to the power system supply are (1) modify, (2) retrofit, and (3) replace. This is to account for the implementation timeframes required for each repurposing option, whereby modifying for flexibility will take the least amount of time to implement and is therefore the least disruptive to the power system. In the long-term scenario (by 2050), replacement of a plant with renewable energy is most desirable as this results in a full exit from coal, which should be the ultimate objective of the coal transition.

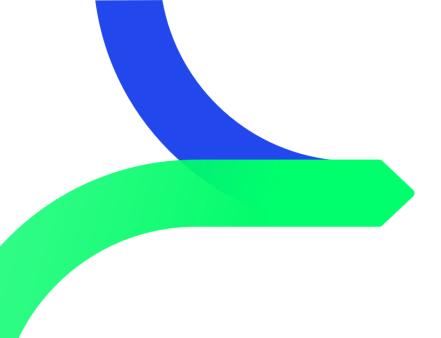
l I		2030	2050
1.1	CFPP age		
1.1	UFFF aye	•	
		Modifying for flexibility is prioritised	Replacement with renewable energy is prioritised
÷		Mourying for nexibility is prioritised	
1		(plants aged 10-30 y/o)	(plants aged > 30 y/o)
1. I.			N C C C C C C C C C C C C C C C C C C C

les	Plant-level indicator	Criteria	Value	2030 scenario	2050 scenario
ing ru		Retrofit	$0 \le x \le 10$ years	0.5	0
Scori	CFPP age	Modify	10 < x ≤ 30 years	1	0
		Replace	> 30 years	0	1

Repurposing adjustment security scoring example

17

Plant-level indicator: CFPP size


Scoring rationale

Two sets of scores are produced under the repurposing adjustment for the short-term (2030) and long-term (2050) to reflect the changing nature of the energy system and its ability to handle disruptions over time. The size of the CFPP is used to determine whether a plant should be prioritised for repurposing in the short or long-term.

Repurposing smaller plants will have the least impact on the security of the system. Therefore, smaller plants should be prioritised in the short-term scenario (2030) as this will cause the least disruption to the grid in supplying electricity. When considering a long-term scenario (2050), medium to large sized plants should be prioritised for repurposing, with the assumption that appropriate measures have been taken to ensure that the energy system is able to tolerate the removal of greater amounts of coal from the power generation mix

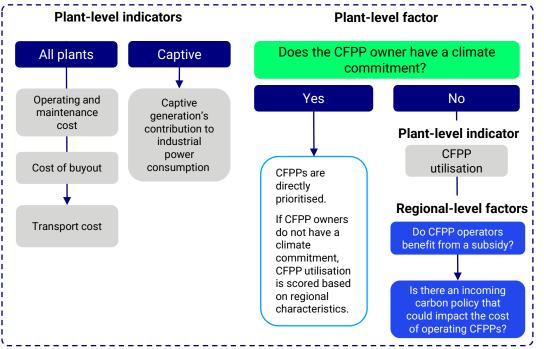
	2030	2050
CFPP size		
	Smaller plants are prioritised	Larger plants are prioritised

	Plant-level indicator	Criteria	Value	2030 scenario	2050 scenario
	CFPP size	Small size	0 ≤ x ≤ 50 MW	1	0
		Medium size	50 < x ≤ 200 MW	0.7	0.7
		Large size	200 < x ≤ 500 MW	0.3	1
		Very large size	> 500 MW	0	0.3

PRIORITISATION FRAMEWORK

Cost scoring

Cost Score (1/2)



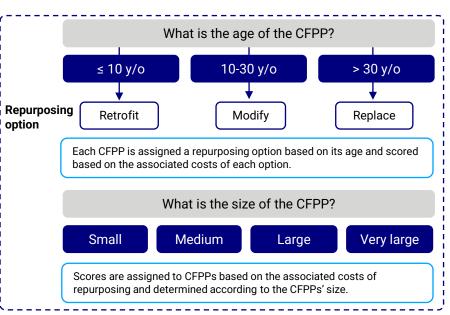
Under this score, CFPPs should be prioritised according to the cost of continuing to operate them, along with how expensive it might be to repurpose the plant.

1 Normalised Cost Score

Scoring of indicators is based on whether the CFPP operator has a climate commitment. For CFPP utilisation, if the operator does not have a climate commitment, scoring is based on two additional factors: coal subsidies and carbon policy.

CFPPs should be prioritised based on the cost of continuing to operate them.

Cost Score (2/2)

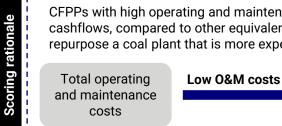

Repurposing adjustment

Repurposing options are considered in the order of least to most expensive:

- 1. Modify the CFPP for flexibility;
- 2. Retrofitting to co-fire with alternative fuels; and
- 3. Replacement with renewable energy. In terms of size, it is assumed that the larger the CFPP, the more costly it is to repurpose.

3 Total Cost Score

The Total Cost Score takes into account the costs of operating CFPPs and how expensive it might be to repurpose the plant.



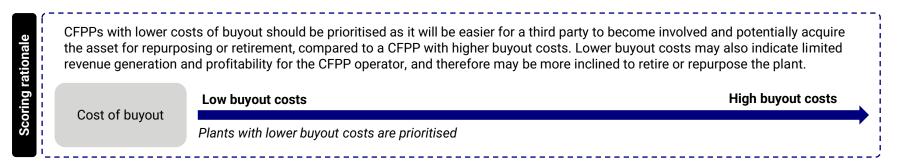
Total Cost Score = Average of [Normalised Cost Score] and [Repurposing adjustment]

Plant-level indicator: total operating and maintenance costs

Total operating and maintenance costs is selected as a plant-level indicator as it relates to how costly it is to continue operating CFPPs.

CFPPs with high operating and maintenance costs should be prioritised as they will be more costly to run and may limit future cashflows, compared to other equivalent plants with lower costs. Therefore, it would be in the plant owner's best interest to retire or repurpose a coal plant that is more expensive to operate.

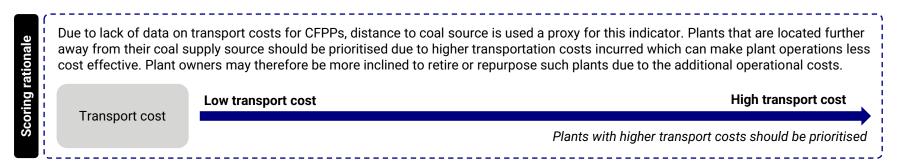
High O&M costs


Plants with high O&M costs are prioritised

	Plant-level indicator	Criteria	Value	Score
	Total operating and maintenance costs	Low costs per year	0 ≤ x ≤ 15 \$/MWh	0
Scorin		Moderate costs per year	15 < x ≤ 30 \$/MWh	0.5
		High costs per year	> 30 \$/MWh	1

Plant-level indicator: cost of buyout

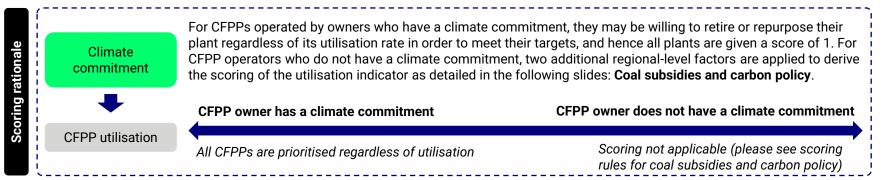
Cost of buyout is selected as a plant-level indicator as it can be used to determine how challenging it might be for a third party to acquire a CFPP to enable its early retirement or repurposing.



ß	Plant-level indicator	Criteria	Value	Score
n fi	Cost of buyout	Low costs	0 ≤ x ≤ 100 \$ millions	1
Scorir		Moderate costs	100 < x ≤ 200 \$ millions	0.5
		High costs	> 200 \$ millions	0

Plant-level indicator: transport cost

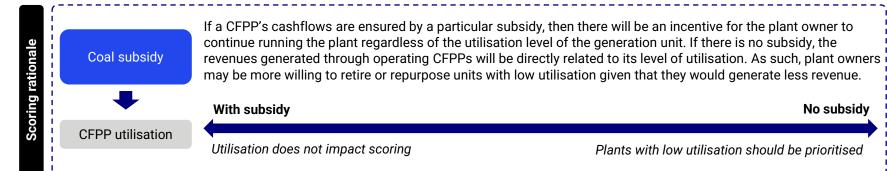
CFPPs that are located close to their coal supply source are expected to face lower transportation costs which in turn can make their operations more cost effective. As such, CFPPs that are located far away from their coal supply source should be prioritised.



es	Plant-level indicator	Criteria	Value	Score
Scoring rules	Transport cost (distance to coal source)	Low costs	Domestic coal (≤ 200 km)	0
		Moderate costs	Domestic coal (> 200 km)	0.5
		High costs	Imported coal	1

Plant-level factor: climate commitment. Plant-level indicator: CFPP utilisation

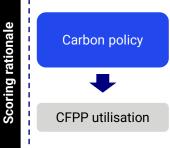
Utilisation is selected as a plant-level indicator as it relates to how much revenue a plant is able to generate in order to run costeffectively. One of the plant-level factors applied to the utilisation plant-level indicator is the climate commitment status of the plant owner.


				Climate	commitment	
Scoring rules	Plant-level indicator	Criteria	Value	CFPP operator has a climate commitment	CFPP operator has no climate commitment	
	CFPP utilisation	Low	0% ≤ x ≤ 20%	1		
		Medium	20% < x ≤ 80%	1	No scoring	
		High	80% < x ≤ 100%	1		

25

Regional-level factor: coal subsidy. Plant-level indicator: CFPP utilisation

Utilisation is selected as a plant-level indicator as it relates to how much revenue a plant is able to generate in order to run costeffectively. If a plant's owner does not have a climate commitment in place, then one of the regional-level factors applied to the utilisation plant-level indicator is whether CFPP operators benefit from subsidies.



				Coal	subsidy
saini	Plant-level indicator	Criteria Va	Value	With subsidy	No subsidy
Scoring	CFPP utilisation	Low	0% ≤ x ≤ 20%	0	1
		Medium	20% < x ≤ 80%	0	0.5
		High	80% < x ≤ 100%	0	0

Regional-level factor: carbon policy. Plant-level indicator: CFPP utilisation

Utilisation is selected as a plant-level indicator as it relates to how much revenue a plant is able to generate in order to run costeffectively. If a plant's owner does not have a climate commitment in place, then one of the regional-level factors applied to the utilisation plant-level indicator is whether an incoming carbon policy could impact the cost of operating CFPPs.

Scoring rules

In cases where the financial value of a CFPP is associated with eventual transactions in a carbon market or avoidance of carbon taxes, the retiring or repurposing of a plant with higher utilisation would be favoured by the plant owner due to greater emissions generated resulting in more costs. If there is no carbon policy that could affect a plant's financial value, there is no additional incentive for plant owners to consider retiring or repurposing their plants, and therefore all the CFPPs are scored with 0.

With carbon market/taxes

No carbon market/taxes

Plants with high utilisation should be prioritised

Utilisation does not impact scoring

				Carb	on policy
	Plant-level indicator	Criteria Value	Value	Carbon market/taxes will affect financial value	Carbon market/taxes will not affect financial value
	CFPP utilisation	Low	$0\% \le x \le 20\%$	0	0
		Medium	20% < x ≤ 80%	0.5	0
		High	80% < x ≤ 100%	1	0

Plant-level indicator: captive generation's contribution to industrial power consumption

If a CFPP is captive, then one of the regional-level factors applied is the importance of the captive plant's power generation to the energy consumed by the local industrial sector.

If a captive plant's power generation has a small contribution to industrial power consumption, then captive CFPPs should be prioritised for retirement or repurposing as it is more likely that the industrial businesses are purchasing the majority of their electricity from the grid, which is likely to be more expensive. As such, the industrial business will not be making significant cost savings from the captive plant and may be more inclined to retire or repurpose the CFPP.

Captive
generatio
contributio
industrial p
consumpt

captive eration's ribution to	CFPPs are not the main source of power for industry	CFPPs are the main source of power for industry
trial power sumption	Captive CFPPs are prioritised	Captive CFPPs are not prioritised

rules	Plant-level indicator	Criteria	Value	Scoring
Scoring	Captive contribution to industrial power consumption	Low	$0 \le x \le 30\%$	1
200		Medium	30 < x ≤ 60%	0.5
		High	> 60%	0

Repurposing adjustment cost scoring example

Plant-level indicator: CFPP age

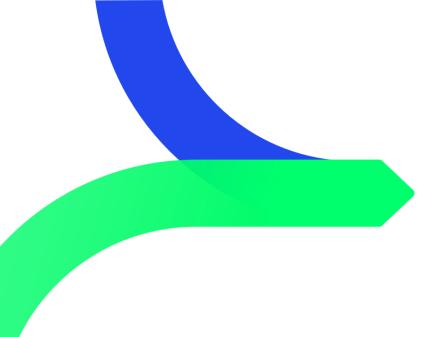
The age indicator is linked to the repurposing option that is most suitable based on a plant's age, and scored based on the associated costs of each option.

ationale	Modifying a CFPP for replacement with rene	flexibility is the least cost repurposing wable energy. Therefore, modifying fo	option, followed by retrofitting to co-fire wi or flexibility should be prioritised first.		
oring I	0555	Retrofit (≤ 10 y/o)	Modify (10-30 y/o)	Replace (> 30 y/o)	
Scori	CFPP age Plants are	Plants are medium priority	Plants are high priority	Plants are low priority	

rules	Plant-level indicator	Criteria	Value	Scoring
ing ru		Retrofit	$0 \le x \le 10$ years	0.5
Scoring	CFPP age	Modify	10 < x ≤ 30 years	1
		Replace	> 30 years	0

Repurposing adjustment cost scoring example

Plant-level indicator: CFPP size


The size indicator is scored based on the costs associated with repurposing the plant.

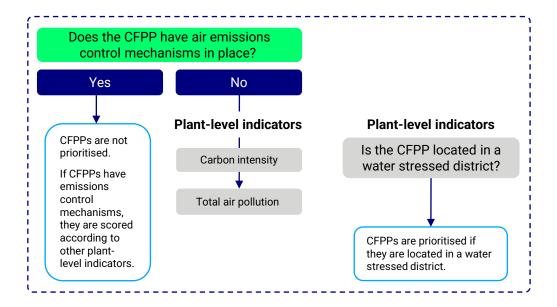
ionale		in size will be least expensive to repurpose relative to larger sized plants, given the level of effort ht be incurred. Therefore, CFPPs that are smaller in size should be prioritised first.	required and
ng rati	CEDD size	Small plants	Large plants
Scorin	CFPP size	Prioritised	Not prioritised

Scoring rules	Plant-level indicator	Criteria	Value	Scoring
		Small size	0 ≤ x ≤ 50 MW	50 < x ≤ 200 MW
		Medium size	50 < x ≤ 200 MW	
	CFPP size	Large size	200 < x ≤ 500 MW	
		Very large size	> 500 MW	0

PRIORITISATION FRAMEWORK

Environment scoring

Environment Score (1/2)

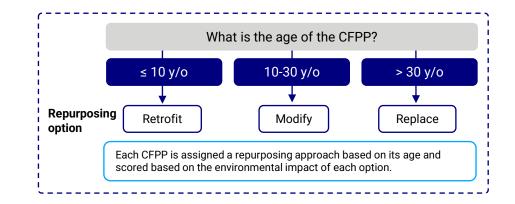


Under this score, CFPPs should be prioritised in terms of how environmentally damaging they are now, along with the environmental impact of their suitable repurposing options.

1 Normalised Environment Score

Scoring of indicators is based on whether the CFPP has air emissions control mechanisms in place.

Location of the CFPP in terms of water stress is also considered as an indicator. CFPPs should be prioritised according to how environmentally damaging they are.



Environment Score (2/2)

Repurposing adjustment

Repurposing options are considered in the order of least to most environmentally damaging: replacement with renewable energy, followed by retrofitting to co-fire with alternative fuels and modifying for flexibility.

3 Total Environment Score

The Total Environment Score takes into account how environmentally damaging the CFPP is and the environmental impact of suitable repurposing options.

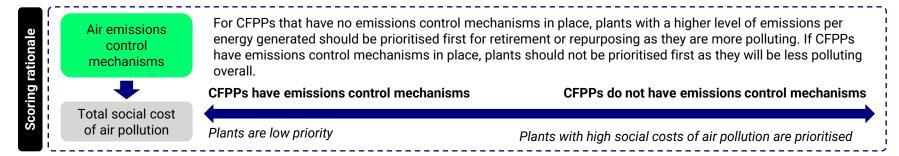
Total Environment Score = Average of [Normalised Environment Score] and [Repurposing adjustment]

Normalised environment scoring example

Plant-level factor: air emissions control mechanisms. Plant-level indicator: carbon intensity

Carbon intensity is selected as a plant-level indicator as it relates to how environmentally damaging the plant is. This is scored based on whether plants have air emissions control mechanisms in place.

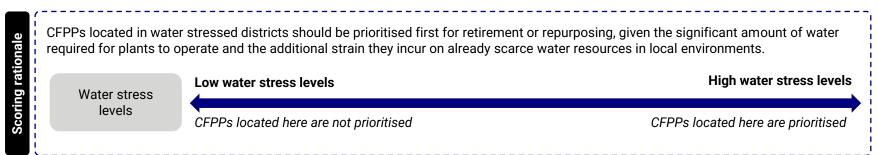
ationale	Air emissions control mechanisms		
ng r		CFPPs have emissions control mechanisms	CFPPs do not have emissions control mechanisms
Scor	Carbon intensity	Plants are low priority	Plants with greater carbon intensity are prioritised


	Plant-level indicator Criteria		Value	Air emissions control mechanisms	
Scoring rules		Unterna	Value	Presence	No presence
		Low	$0.00 \le x \le 0.80 \text{ tCO}_2 \text{e/MWh}$	0	0 0.5
	Carbon intensity	Medium	0.80 < x ≤ 0.90 tCO ₂ e/MWh	0	0.5
	Carbon intensity	High	0.90 < x ≤ 1.00 tCO ₂ e/MWh	0	0 0.5 0.75
		Very high	> 1.00 tCO ₂ e/MWh	0	1

Normalised environment scoring example

Plant-level factor: air emissions control mechanisms. Plant-level indicator: total social cost of air pollution

The contribution of the plant to air pollution is estimated by using the metric total social cost of air pollution, which is selected as a plant-level indicator. This captures the social cost of air pollution without accounting for territorial restrictions (i.e., it is not adjusted for local impact within national borders). This is scored based on whether plants have air emissions control mechanisms in place.


	Plant-level indicator	Critorio	Criteria Value	Air emissions control mechanisms	
les		Citteria		Presence	No presence
Scoring rules	Total social cost of air pollution	Low	0 ≤ x ≤ 60 \$/MWh	0	0
		Medium	60 < x ≤ 120 \$/MWh	0	0.5
		High	> 120 \$/MWh	0	1

Normalised environment scoring example

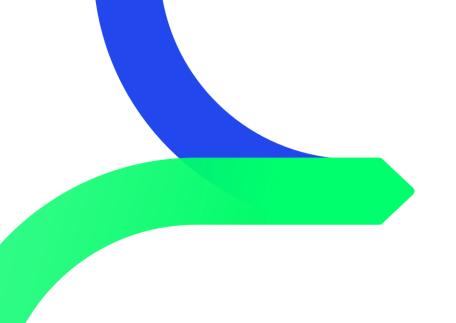
Plant-level indicator: water stress levels

The potential water impact of a CFPP is captured by using the water stress levels of the region where the plant is located. The water stress level is the ratio of fresh water demand to supply in the region where the plant is located.

Scoring rules	Plant-level indicator	Criteria	Value	Scoring
	Water stress levels	Low	< 10%	0
		Low-medium	10-20%	0.25
		Medium-high	20-40%	0.5
		High	40-80%	0.75
		Extremely high	> 80%	1

Repurposing adjustment environment scoring example

Plant-level indicator: CFPP age


The age indicator is linked to the repurposing option that is most suitable based on a plant's age and scored based on the associated environmental impact of each option.

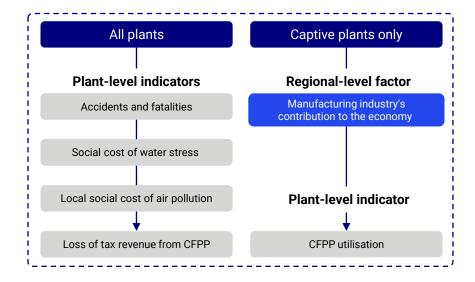
Replacement with renewable energy is the least environmentally damaging option, and therefore should be prioritised first. It is expected that emissions reductions from retrofitting to co-fire with alternative fuels will vary depending on the type of fuels used and blending rates, and as such, may not always be less emissions-intensive than modifying the CFPP for flexibility, depending on its frequency of use. As such, both options are deemed the same in terms of emissions reduction potential for this study and are scored equally.

	Retrofit (≤ 10 y/o)	etrofit (≤ 10 y/o) Modify (10-30 y/o) Re	
CFPP age	Plants are medium priority	Plants are medium priority	Plants are high priority

rules	Plant-level indicator	Criteria	Value	Scoring
ng	CFPP age	Retrofit	$0 \le x \le 10$ years	0.5
Scori		Modify	10 < x ≤ 30 years	0.5
		Replace	> 30 years	1

PRIORITISATION FRAMEWORK

Socioeconomic scoring


Socioeconomic Score (1/2)

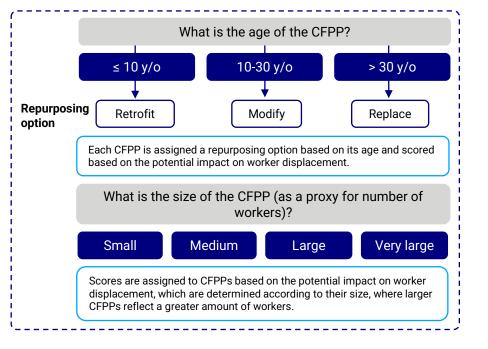
Under this score, CFPPs should be prioritised in terms of their impact on society today, along with the likely impact that the repurposing options will have on livelihoods in terms of continued employment and requirements for re-training/reallocation of jobs.

1 Normalised Socioeconomic Score

CFPPs should be prioritised in terms of their impact on society today, including accident fatalities, potential loss of tax revenues in the event of repurposing, the social cost of water stress and air pollution, as well as the manufacturing industry's contribution to the economy for captive plants.

Socioeconomic Score (2/2)

2 Repurposing adjustment


Repurposing options are considered in the order of the impact on worker displacement:

- 1. Modify CFPP for flexibility;
- Retrofitting to co-fire with alternative fuels; and
- 3. Replacement with renewable energy.

Number of workers is also a key consideration for potential displacement.

Total Socioeconomic Score

The Total Socioeconomic Score takes into account the impact of CFPPs on society, along with the likely impact that different repurposing options will have on livelihoods.

Total Socioeconomic Score = Average of [Normalised Socioeconomic Score] and [Repurposing adjustment]

Plant-level indicator: accidents and fatalities

Scoring rationale

Accidents and fatalities are used as a proxy for safety standards enforced at plant sites. Due to lack of data, incidents reported in the media in the last five years are used for scoring this indicator. Plants that have reported fatalities are prioritised first as the loss of life is considered the most severe outcome and represents a failure in safety standards for workers. This is followed by reported accidents including worker injuries or leaks impacting local communities as this indicates violations in safety rules.

Plants that do not have a strong safety track record should be prioritised for retirement or repurposing in order to mitigate the risk of harm to workers and potential toxic leaks that can adversely impact local communities.

Accidents and fatalities	No accidents or fatalities	Accidents	Fatalities
Tataities	Plants are low priority	Plants are medium priority	Plants are high priority

SS	Plant-level indicator	Criteria	Scoring
g rules		None	0
Scoring	Accidents and fatalities (reported in the media in the last five years)	Accidents	0.5
S		Fatalities	1

41

Plant-level indicator: loss of tax revenues

Due to lack of data, plant utilisation and size are used as proxies for this indicator as they can provide an indication of the amount of tax revenue that might be lost to the government in case of retirement.

onale	Loss of tax revenues	It is assumed that bigger plants with higher utilisation pay more taxes due to the size of their operations and greater revenue generation potential. Therefore, small plants with the low utilisation should be prioritised first minimise losses to the government, followed by medium-sized plants with moderate utilisation, and finally, large plants with high utilisation.	
g rati	➡		
corin	CFPP utilisation	Small size and low utilisation	Large size and high utilisation
	CFPP size	Plants are high priority	Plants are low priority

			Utilisation			
c a ln l	Plant-level indicator	Size	$0\% \le x \le 20\%$	20% < x ≤ 80%	80% < x ≤ 100% 0.5 0.35 0.15 0	
ß		0 ≤ x ≤ 50 MW	1	0.75	0.5	
6III ooo	Loop of tax revenues	50 < x ≤ 200 MW	0.85	0.6	0.35	
	Loss of tax revenues	200 < x ≤ 500 MW	0.65	0.4	0.15	
		> 500 MW	0.5	0.25	0	

42

Regional-level factor: manufacturing industry's contribution to gross value added. Plant-level indicator: CFPP utilisation

If a CFPP is captive, then one of the regional-level factors applied is the economic importance of the manufacturing industry, as measured by its contribution to the region's gross value added (GVA). Utilisation is selected as a plant-level indicator as it relates to how much of the captive plant's current capacity is being used to contribute to the manufacturing outputs.

rationale	industry's contribution to gross value	Captive plants with high utilisation should only be prioritised if the region's manufacturing industry is not critical to the economy. If the manufacturing industry has a low contribution to the economy, then all captive CFPPs should be prioritised as their removal or repurposing will not have significant economic impact. If the manufacturing industry has a high contribution to the economy, then all captive CFPPs should not be prioritised as their removal or repurposing will not have significant economic impact. If the manufacturing industry has a high contribution to the economy, then all captive CFPPs should not be prioritised as their removal or repurposing will have a major negative economic impact				ll captive CFPPs act. If the
Scoring		Manufacturing mak contribution to GVA			Manufa	cturing makes a large contribution to GVA
	CFPP utilisation	All captive CFPPs a	re prioritised		All captive CF	PPs are not prioritised
				Manufacturing i	ndustry's contribution to gro	oss value added
g rules	Plant-level indicator	Criteria	Value	Contribution is ≤ 30%	Contribution is > 30% but < 60%	Contribution is ≥ 60%
coring		Low	0% ≤ x ≤ 20%	1	1	0
Ň	CFPP utilisation	Medium	20% < x ≤ 80%	1	0.5	0
		High	80% < x ≤ 100%	1	0	0

Low social cost of water stress

Plant-level indicator: social cost of water stress

The social cost of water stress is selected as a plant-level indicator to capture the cost of socioeconomic losses stemming from water stress as a result of the operation of CFPPs.

As CFPPs are key contributors to water scarcity, plants that operate in regions where the expected socioeconomic losses from water stress are high should be prioritised for retirement or repurposing to limit the impacts of water stress on the local community. Plants operating in regions where the social cost of water stress is medium should be prioritised next, followed by plants in regions with a low social cost of water stress.

Social cost of water stress High social cost of water stress

Plants are high priority

	Plant-level indicator	Criteria	Value	Scoring	
5		Low	0 ≤ x ≤ 1.5 \$/MWh	0	
	Social cost of water stress	Medium	1.5 < x ≤ 3.0 \$/MWh	0.5	
		High	> 3 \$/MWh	1	

Plant-level indicator: local social cost of air pollution

The local social cost of air pollution considers only in-country impacts of air pollution as a result of a plant's operations.

tionale	As hea	CFPPs are key cont Ith impacts to the c	ributors to air pollution, plants that contribute the most to the le community should be prioritised for retirement or repurposing.	ocal air pollution and therefore result in higher
Scoring ra	-	ocal social cost	Low local social cost of air pollution	High local social cost of air pollution
Scol		of air pollution		Plants are high priority

SS	Plant-level indicator	Criteria	Value	Scoring
g rules		Low	0 ≤ x ≤ 20 \$/MWh	0
Scoring	Local social cost of air pollution	Medium	20 < x ≤ 40 \$/MWh	0.5
S	·	High	> 40 \$/MWh	1

Socioeconomic repurposing adjustment scoring example

Plant-level indicator: CFPP age

Scoring ration

The age of the CFPP is used to inform the repurposing option most suited for the plant. The repurposing options are then scored based on their expected impact on worker displacement.

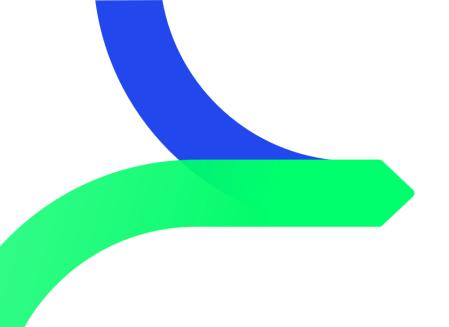
CFPPs eligible for modification for flexibility provision should be prioritised first as this form of repurposing is expected to have the least impact on workers. Retrofitting to co-fire with alternative fuels should be prioritised next as a high transferability of worker skills is expected with minimal disruption to livelihoods. Replacement with renewable energy is expected to have the biggest impact on worker displacement as it will require significant re-training over long timeframes. As such, CFPPs most eligible to be replaced with renewable energy should be prioritised least to minimise the impact on livelihoods.

CFPP age	Retrofit (≤ 10 y/o)	Modify (10-30 y/o) Replace (> 30 y/o)	
CFFF age	Plants are medium priority	Plants are high priority	Plants are low priority

8	Plant-level indicator	Criteria	Value	Score
		Retrofit	$0 \le x \le 10$ years	0.5
scoring	CFPP age	Modify	10 < x ≤ 30 years	1
		Replace	> 30 years	0

Socioeconomic repurposing adjustment scoring example

Plant-level indicator: CFPP size (number of employees)


Due to lack of data on the number of employees per plant, the size indicator is used as a proxy for employment, where plants with higher installed capacities tend to have more employees. This indicator is scored based on the potential socioeconomic impact of repurposing or retirement.

Large CFPPs with a bigger workforce will likely face some extent of disruption regardless of the option selected. As such, smaller plants employing fewer workers should be prioritised first, followed by medium-sized plants with moderate to large numbers of workers. It should be noted that, according to the literature, after a certain threshold, larger plant capacities do not necessarily indicate more employees due to significant automation. Therefore, any plant greater than 200 MW is considered to be "large"*.

CFPP size (number of employees)	Small plants	Large plants
	Prioritised	Not prioritised

es	Plant-level indicator	Criteria	Value	Score
ıg rules		Small	0 ≤ x ≤ 100 MW	1
Scoring	CFPP size (number of employees)	Medium	101 < x ≤ 200 MW	0.5
		Large	> 201 MW	0

PRIORITISATION FRAMEWORK

Conclusion and next steps

Conclusions and next steps

The **Prioritisation Framework** is designed to account for the regional context in terms of its degree of readiness to transition to clean energy, and the CFPP's operating conditions and their impact on the environment and the community.

The framework is not designed to be a one size fits all approach to ranking CFPPs for repurposing or retirement, and offers flexibility to stakeholders in the following ways:

Additional repurposing options can be integrated into the framework based on other technologies suited to the local context.

The criteria used to assess and rank plants and the weightings applied to the indicators under each criterion can be adjusted to reflect regional priorities and stakeholder interests.

Timeframe preferences for repurposing or retirement decisions can be accounted for in the framework and adjusted based on the region's coal phase-out ambitions.

When replicated for other regions, the **Prioritisation Framework** can serve as an entry point for comprehensive discussions with policymakers and key energy sector stakeholders on how they should plan support for energy transition initiatives.

The results can provide a reference point on the potential scale of renewable energy deployment needed and corresponding investment requirements based on the size of coal capacity prioritised for repurposing.

Whilst reasonable steps have been taken to ensure that the information contained within this publication is correct, the authors, the Carbon Trust, its agents, contractors and sub-contractors give no warranty and make no representation as to its accuracy and accept no liability for any errors or omissions. All trademarks, service marks and logos in this publication, and copyright in it, are the property of the Carbon Trust (or its licensors). Nothing in this publication shall be construed as granting any licence or right to use or reproduce any of the trademarks, services marks, logos, copyright or any proprietary information in any way without the Carbon Trust's prior written permission. The Carbon Trust enforces infringements of its intellectual property rights to the full extent permitted by law.

The Carbon Trust is a company limited by guarantee and registered in England and Wales under company number 4190230 with its registered office at Level 5, Arbor, 255 Blackfriars Road, London SE1 9AX, UK.

© The Carbon Trust 2023. All rights reserved.